[til]기초 확률&통계#8: 사건의 독립과 종속

01. 사건의 독립과 종속

  • 예제
    • 10개의 제비뽑기가 있음, 당첨제베는 2개, 철수와 영희 순서로 제비뽑기 진행
    • 복원추출: 제비를 뽑으면 다시 주머니에 추가
    • 비복원추출: 뽑힌 제비는 재사용하지 않음, 제거
  • 복원 추출
철수의 확률 $\Longrightarrow$ 영희가 당청될 확률
철수의 당첨 사건 $\frac{2}{10}$ $\Longrightarrow$ $\frac{2}{10}$
철수의 비당첨 사건 $\frac{8}{10}$ $\Longrightarrow$ $\frac{2}{10}$
  • 철수의 당첨 여부는 영희의 당첨 사건 확률은 변하지 않음
  • 철수의 당첨 사건은 영희의 당첨 사건에 영향을 미치지 않음

  • 비복원 추출
철수의 확률 $\Longrightarrow$ 영희가 당청될 확률
철수의 당첨 사건 $\frac{2}{10}$ $\Longrightarrow$ $\frac{1}{9}$
철수의 비당첨 사건 $\frac{8}{10}$ $\Longrightarrow$ $\frac{2}{10}$
  • 철수의 당첨 여부에 따라서 영희의 당첨 활률이 변함
  • 철수의 당첨 사건은 영희의 당첨 사건에 영향을 미침

독립과 종속

  • 종속: 사건이 2개 있을 때, 한 사건이 다른 사건에 영향을 주는 것
    • 두 사건이 종속되었다라고 표현
    • 비복원
  • 독립: 사건이 2개 있을 때, 한 사건이 다른 사건에 영향을 주지 않는 것
    • 두 사건이 됙립되었다라고 표현
    • 복원

수식으로 살펴본 종속

$$ P(B|A) \neq P(B|A^c) $$

수식으로 살펴본 독립

  • 독립 사건

$$ P(B|A) = P(B|A^c) = P(B) $$

  • 두 사건이 독립이면

$$ \begin{align} P(A \cap B) &= P(A)P(B|A)\\
&= P(A)P(B) \end{align} $$

  • 독립의 필요 충분 조건

$$ P(B|A) = P(B) $$

배반 사건과 종속 사건

  • 배반 사건이란: $P(A \cap B)=0$

  • 질문1: 배반 사건이면 종속 사건이다

    • A 사건이 발생하면 B는 발생하는 않됨
    • A 사건이 B 사건이 종속됨
  • 질문2: 종속 사건이면 배반 사건이다.

    • 종속이라고 해서 배반은 아님
작성자: 김태완
김태완 avatar
작성자: 김태완
1999년 부터 Java, Framework, Middleware, SOA, DB Replication, Cache, CEP, NoSQL, Big Data, Cloud를 키워드로 살아왔습니다. 현재는 한국오라클 빅데이터 팀 소속으로 빅데이터와 Machine Learning을 중점에 두고 있습니다. 최근에는 Deep Learning을 열공 중입니다.
E-mail: taewanme@gmail.com